JOURNAL OF COMPUTATIONAL PHYSICS 61. 499- 518 (1985)

Finite Difference Method to Solve
Incompressible Fluid Flow

NOBUMASA TAKEMITSU

Mechanical Engineering, Faculty of Engineering. Tokyo Denki University,
2-2 Nishiki-cho, Kanda, Chivoda-ku, Tokyo. Japan

Received March 27, 1984 revised February 8, 1985

A method to solve incompressible fluid flow is proposed. The method uses primitive
vanables (velocity and pressure of the fluid) and introduces an idea that the discretized
Navier-Stokes cquations have an invariant implicitly in each ijteration at any time step. As
numerical cxamples, transicnt two-dimensional Poiseuille flow and steady flow past a
backward-facing step arc calculated. It is shown that the method needs fewer iterations than
the MAC and the SMAC methods. and the accuracy of the present method is guaranteed by
comparison with the analytic solution and the existing methods. ¢ 1985 Academic Press. Inc.

INTRODUCTION

Numerical solutions of Navier-Stokes equations are extremely valuable in study-
ing fluid dynamics. Finite difference methods have been applied (1) where stream
function and vorticity arc used, and (2) where primitive variables, velocity and
pressure, arc used. In case (1) the equation of continuity is satisfied exactly by
introducing the stream function and convergence is rapid. However, for flows with
free surfaces, the boundary conditions present difficulties and, in three dimensions,
lack of a scalar stream function inhibits almost the solution [1]. In case (2) boun-
dary conditions and three-dimensional geometry are casily handled. Unfortunately,
the velocity components do not automatically satisfy the equation of continuity nor
is the convergence rapid [2 9].

This paper presents a new method, using primitive variables, based on the idea of
an invariant implicit in cach iteration at any time step (unsteady flow), or at any
iteration (steady flow). Although applicable to three-dimensional flows, the paper
will be restricted to two-dimensional flows.

FORMULATION OF A NEW METHOD

The Navier Stokes cquation of a viscous incompressible fluid is expressed in
non-dimensional form as

Cy 1
& (vV)v= —Vp 4 — Vi, (1}
Cl Re
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using a velocity vector v (Cartesian components u, v, w), time ¢, pressure p, and the
operator nabla V. Here, Re= UL/v is the Reynolds number, U the characteristic
speed, L the characteristic length of the flow field, and v the kinematic viscosity of
the fluid. The equation of continuity is

D=V -v=0, (2)

where D is dilatation,
When we take the rotation of Eq. (1), the vorticity transport equation

170 ‘ . o,
—8—t+(v Vio—(® V)V—I—QEVCD (3)

is obtained, where o (=V x v) is vorticity. Velocity is obtained by
v=Vxy, o=-Vi. (4a, b)

Here, y is a stream function, which is a vector potential for three-dimensional
flows.

To obtain numerical solutions of Eqs. (1) and (2), or of Egs. (3) and (4), requires
initial and boundary conditions. In both cases, the solution process is iterative. In
two-dimensional flows, y is a scalar function (see next section) and Eq. (2) is
always satisfied exactly. Thus fewer iterations are needed to solve Egs. (3) and (4)
than to solve Egs. (1) and (2).

Fewer iterations are necessary if some conditions are added implicitly in each
iteration when Egs. (1) and (2) are solved simultaneously. For this purpose add an
implicit invariant in each iteration at any time step =1

When Egs. (3) and (4) are solved iteratively using the forward-time and centered-
space finite difference method at the reference time step =1, the value of the vor-
ticity is unchanged and Eq. (2) is imposed. Moreover, the vorticity remains
unchanged when Eqs (1) and (2) are solved iteratively, i.c., the vorticity is invariant
at ¢t =1. This is expressed as

0=V =pP = P k= ... (5)

where ¢ denotes a time step at t=¢, and (k) the number of iterations. Hereafter, ¢ is
deleted. Equation (5) is rewritten as

0=Vxv® =V xyk+tD, (6)
from which we have

vk D g gtk D) (7)
where ¢ is a potential function. If we take the divergence of Eq. (7),

D(k+l)=D(k)—V2¢(k+l) (8)
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is obtained. Since the dilatation D% ="' is zcro, we obtain

DRI =Vt (9)

Thus, an invariant 1s introduced at any time step, if Eq. {9) is solved for ¢ in each
iteration. The new velocity field at k=k + 1 is obtained from Egq. (7). and the
pressure field at 1 =1+ Ar (At =discretized time increment) is obtained from Eq.
(1.

In the SMAC (simplified MAC) method [4]. the tentative velocities are modified
to their final values so as to preserve vorticity at every point. Hence, the basic idea
of the SMAC method 1s that it introduces a tentative velocity field. On the other
hand. the present method is based on the idea that the discretized Navier Stokes
equation has an invariant in each iteration in the same way as in the stream
function and vorticity method. The author belicves that the simplest invariant is
vorticity. If the vorticity is taken as an invariant, the formulation is somewhat
similar to that of thec SMAC method cxcept for the calculation of pressure.
However. because of the difference of the basic idea between the proposed method
and the SMAC method, Eq. (9) plays an important role in the present method, but
in the SMAC method the time increment At is important. It should also be noted
that a potential function ¢ is calculated by

D=V (10)

in the SMAC method. Here, D is calculated from tentative velocity components.
and D remains unchanged until the converged solution is obtained.

This new formulation requires less calculation time than the SMAC method, and
the steady-state equation can be evaluated.

NUMERICAI. EXAMPLES

A. Unsteady Flow

First, transient two-dimensional Poiscuille flow 1s studied. The initial and boun-
dary conditions of this flow are

1< 0; u=v=Y=w=0 (cverywhere), (11a)
1>0; Y=w=0 at y =0 (center line), {11b)
y=1Lu=3y/Cy=0 at y =1 (upper wall), (11¢)

where v and ¢ are velocity components in x and y directions, respectively, ¥ is the
scalar stream function, and  is the vorticity. The analytic solution for this flow,
obtained by the Laplace transform, is
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3 2 - 2 ﬁncos ﬁny ) 2,
2= bl ALl — B21/Re),
¢ 2 ( }/ + )+ ngl 5121 < sin ﬁn exp( ﬁ" ‘ )
v=0,
1 3 X 2 /sinf,y
— (=43 < — y ) exp(~ B2t/Re),
y=5(=y+ y)+,,_,ﬁ;’,(sinﬁ,, y)éXP( Bii/Re).
o 2sinf,y 2
Syt Y P Be/Re),
w ) +"§1 sin ﬁ,, Cxp( Bn ! ")

Op/x = — {3 +2 ) exp(~— ,Z,I,/Re)}/ Re,

ne=|

(12a)
(12b)

(12¢)

(12d)

(12e)

where 3, is the nth positive solution of §,=tan f, (0 < B, < f, < -+ ). Numcrically,

convergence will require, at most, 40 terms in thc above series.
In two-dimensional flows, Egs. (1) and (2) are written in the form

cu out Cuv cp 1
—t=—+—=—= =V,
&t Ox Oy ¢x Re
v fuw ot op 1o,
—t+ oot = =+ =V
¢t Ox oy ¢y Re

cu  év

D == — = 0
ox oy

These equations are discretized as

(13a)

(13b)

(13c)

2 2
Uu: iy — U 7 Ui (o —U; L TR
Crdr__ gt i+ 172, i 172, iRy 1271 - 12V 102,
u;; ‘“i»,/+/“‘:—< +

h s

pL "[7, i 1 1

——L ——h l/‘f‘R—e{P(uH ,‘j+u,_,_,—2u,‘,)
1 Rk

+3—2— (ui»l'*’ t + ul.vl -1 zui.])}J ’

(14a)

: , . . .2 2
P A= 5l 4 Ay [ _<”m Lj—12Uis 0 ;7 U 12Y; L2y Ciivin— U5, 1,2)
i Tl

h $

pl.'_pi. - 1 ]
Loy { (v, 1+ 0, 1_/‘"2’/’,;/)

s Re | W?
1 {
+S_g (IR SN ZU.,/)}J .
D Uiy ;—U Cijat— Ui

o
= +
h h s

(14b)

(14c)
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The indices i and j count cell-center, cell-boundary, or cell-corner positions in the
x and y directions, and 4 and s are mesh sizes in the x and y directions, respectively.
The superscript indices ¢ and ¢+ 4¢ (4t =time increment) show time steps. The
velocity components u and v are defined at cell boundaries; pressure p and
dilatation D are defined at cell centers; the stream function y and the vorticity w
are defined at cell corners (see Fig. 1). The quantities at all fractional indices are
obtained as simple averages of the two adjacent quantities, e.g.,

Uivr172,; = (u +u1+11)12 etc.
Equations (3) and (4) become

(3wL6uw+6vw ! Ve (15
—4+—+——=- Vo, a
¢t déx Oy Re . )

— VY,  u=dy/dy, = —dy/ex (15b. ¢}

in the two-dimensional case (y—w method). These equations are discretized as

] Uip1j - 12Wivr— Uiy 120y,
(uj‘}"’=wf:/+At[~( V2h S

+ Ui 41 @i+t Ui 12y 1Wij - +_1_ l (@
A
2s Re [R? 7Y

] I3
+w,_,vj—2w,~vj)+F(w,y,_h,+c),,,- 1—20),‘,)}], {16a)

) 1 1
2(715_*_?2) ij hz(wlfl_/+l// j ;E(l//:./-l_kwuj 1)+w:,,‘v (léb)
Wikt =g+ RE (P -y (16¢)
Winjer Vil |¥iatjo
Wi, jo1 Twiajo
Pi,j
ui.] o}, "it)
\l’h llJi~1.j
Tul} Visj 1wi01.j

FiG. 1. Placement of field vanables.
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Here, we introduce a relaxation factor RF,, for . Velocity components «, ; and v,
are calculated from

ul.j=(¢i,j+l_wi‘/)//s’ Vi = —(¥; . 1,1_‘/’;./‘)/}7- (1é6d)

Solutions are obtaincd by four methods; the yy—w method, the MAC method, the
SMAC method, and the present method.
In the MAC method, the pressure field is obtained by solving

AN I
2 /1-2+s_2 pl._/:P(pil-l.j+pi—l,j)+s*2(p:<jol+pi,/‘-l)

2,2

D, &%’ Cluv ¢t g
N 2——+——--VD 17
{ 4t ox? * éx ¢y  ¢éy°  Re } (17a)

PtV =plt) + RE (p¥,— pi¥)), (17b)

where RF, is a rclaxation factor for p.
In the SMAC method, the tentative velocity ¥(&, ©#) is calculated from

i'=v’+/1t[-—(v-Vv)—V/J+7;—V2vJ, (18a)
e

p=v-3, (18b)

and velocity components at 1 =+ A¢ are corrected by

1 1 1 1 ~
2 () Bt G ) By b 0= P (180
Pkt D= k) L RF (g, — ¢%)), (18d)
vt =§ Vg, {(18e)

where RF, is a relaxation factor for ¢.
In the present method, v'*4" is calculated from Eqs. (14a), (14b), and v/ * ¥ is
corrected by

DK =V .y (19a)
1 1 1 1 (%)
2 F+7 ,_j='}?(¢”1‘j+¢i—1_j)+;z’(¢i‘/+l+¢i,/—-l)_D1/’ (19b)
g1 =g 4 RF (pF,— g10)), (19¢c)
yir Ak D oy adi) gtk ) (19d)

where RF  is a relaxation factor for ¢.
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Let Re=35 and divide the flow ficld as shown in Fig. 2. Mesh sizes / and s are
hA=s5=0.1, and IC=61, JC =13, and the time increment 4¢=1/100.

The initial values for u, v, p, ¥, and ® arc all equal to zero, and the boundary
conditions are:

{a) Upstream boundary

(1) w, ¢, »: given by the analytic solution,
(2) v=0,

(3) =0,

(4) @1, =¢,;(i=2)

(b)Y Upper wall

(1) t// g,iven by the analytic solution,
(2) w,,: alculated by 2, — V., )it (j=JC—1),

(3) u,/H i) (j—-/("——2),
4 v=0,
(5) p1j+1 P;,+(«5Re) - 4!—1} Where l:i,jt?:vij and D!/J-l_DI/

(j=JC—2, MAC method),
6) ¢i,i1=0.,(j=JC=2).

(¢} Lower boundary (center linc)

(Y Yy=w=0,
(2) ul.[ -l:u{,[ ‘1:2)7
(3} v=0,

(4) ¢1./’ } = ¢l./ (J’:z)a
(5) p.;-1=pi,; (j=2, MAC method),
(6) iy 1= Uiy (j =2, MAC method).

v

Jc K—')'——r’—-—{ —-1~~——

JC1JZ\‘/ B([é J(BJ,_/B'BIL g N Wail
8] L1 '8
8l s TudPii | 1 8
PR T B Sl e s
3 B — —I— {——+— -r———-———i —~-—;

2 2 ._.L__l___l__l_ [

X BiB[B(B B‘eia Bgl

=t 2 3 4

Fic. 2. Discretion of the flow field. B - boundary cell. open box ~ fluid cell.

SKL 613 1Y
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(d) Downstrcam boundary
(1) ¢Ap/6x*=0,
(2) JSw/ox=0,
(3) dv/iex=0,
4) Uy =u = (Ais) vy —t,,) (1=1C—1),
(5) ¢=0,
(6) ¢%*p/dx? =0 (MAC method).

In the SMAC and the present method if the condition
(’5,‘ l.j:¢i,/

is imposed at the upstrcam end, then

1 2 Piv1,; |
<F+5—2>¢1*/= l:zll+s—2(¢iv_;¢1+¢i,, =D,

is used instcad of Egs. (18¢) or (19b).
The numerical procedures per cycle are:

(i) - method

wl
t=t+ At
wl_ wl-v At __wgn(m_'_ l//”‘“ v/fdl [7
vl Eq. (16a) Fq.(16c) | w4? | Eq.(20)

—

where suffix B.C. denotes boundary conditions.
(i1) MAC mecthod

vI

t=t+ At

[+ At i+ At

—— D' — p _— v -
p' Eq.(14c) | Eq.(17b) Eqs.(l4a),(14b)ﬁ]

(iii) SMAC mecthod

vl

I=1t+ 4t
~ t+ A1 1 -4t

—_— ¥ — D —— 4 v -— p
P’ Eq. (18a) Eq. (18b) Eq. (18d) Eq. (18¢) see Ref. [4]‘1

+ — —_————
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(iv) Present method

t

v
t=t-+At
o v At - D(k) e ¢(k+1) . ‘,(k-nl) _'___ pr-m _}
P Eqgs. (14a), (14b) L Fq.(192)  Eq.(19%) Eq.(19d)] Eq.(20) |
- _

——

The main calculations proceed [rom left to right, and the notation « denotes
itcrations. In the above numerical procedures, Eqs. (16b), (17a). (18c¢), and (19b)
are all solved by the SLOR mcthod [107], the relaxation factors are RF,=RF =
RF,=18 in the y-w method, the MAC method, and the SMAC method, and
RF,=1 in the present method. In the ¥-® method and the present method, the
pressure field at new time step is calculated by

ov

! 1 ,
(Vpy+4' = “((TI> =V (w)' + Re (V) £20)
: ¢

where (Cv/¢t)" i1s evaluated by simple forward differences. In this problem, pressure
1s intcgrated from left to right at y =1 —s/2 and from top to bottom at x.

Figure 3 shows the convergence rate by various mcthods. In the figure, ¢, is
defined by

er= 10— s (21)
1Jr
MAC
/’/
AN /
3 y
-_\(SMAC

. -
\ \‘
\\ \\
) S 1 n i " L " 1 i 1
200 300 400 500 600 700
Number of lterations k

F1G. 3. Typical demeanor of convergence by various methods.
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where | |,.., denotes maximum value of | |, and f stands for Y (y- w method), p
(MAC method), or ¢ (SMAC and the present method).

The velocity profiles at =24 are shown in Fig. 4. Only the solution by the
MAC method is quite different from the analytic solution. The MAC method
represents fluid driven by a pressure gradicnt (see Eq. (17a)). Therefore, when the
fluid starts impulsively from rest to a finite velocity, the solution by the MAC
method is not accurate in the whole flow field. In the MAC method, maximum
error of dilatation &, was 10.5, where ¢, is defined by

8D=|Dl.jlmax‘ (22)

The solution by the SMAC mecthod, while accurate (¢, =1.1x10 2), required
many iterations to obtain convergence (see Fig. 3). The solutions by the present
method are very close to the analytic solution. When we stop iterations with the
condition that ¢, is O(1072), the velocity profile is very close to the one by the ¥-w
method, and if we stop iterations when ¢y, is O(107?), the solution agrees almost
precisely with the solution by the - method.

However, the convergent process is not easy to analyze and is not always stable
in the present method. Therefore ¢ is set to zero when ¢{¥) becomes larger then
e 1, or when ¢%) becomes larger than ¢~ and ¢{") becomes larger than ¢§* 1.
In this problem, previous values of ¢ are used (¢, < 10 ~2), or ¢ is set equal to zero,
when &) becomes larger than e 'V (e, <5x 10 ). (See also Section B, Steady
Flow.)

Figure 5 shows velocity profiles by the four methods at ¢ =0.5 (at downstream
end). Again only the solution by the MAC method is not closc to the analytic
solution. More time steps are necessary to make &, small; ¢, is still 5.2 in the MAC
method.

b

i OL Present(Ep=4.5%10"%)

0.l I

O,SA‘\MAC Present(€n=2.3x1g3)——a

(€0=10.5) SMAC (ep=1.1x10 )‘_‘. :

0.4-‘ P-w —| '

0.2H Exact —

) , \ A ’ ?

0 0.25 05 0.75 1.0 u

FiG. 4. Vclocity profiles by various methods at downstream end (7 = 0.02).
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. _Present(€p<107)
/Present(en<5x10 )

FiG. 5. Velocity profiles by various methods at down stream end (1 =0.5).

In Fig. 6, global error of convective terms, defined by

A’ |up cuvl  |ér?
=X (‘_ : >+ 2 (' §+| > (=)
ieage 2\ Cxl Gy e s\ ex) o [Cy
=200 2 =3.C -2

is shown. The error by the Y- method, the SMAC method, and the present
method decreases as time increases. The magnitude of the error by the SMAC
method is the same as that of the - w method. Although ¢, is shown increasing
with time in the MAC method, it will eventually decrease.

Figure 7a shows the pressure distribution along the center line at +=0.5. Only
the MAC method is quite different from the analytic solution.

Figures 4, 5, 6, and 7a indicate that the SMAC method is more accurate than the
present method since ¢, is small. However, this is not true in general. Figure 7b

0%} MAC

I

Present(e;<1 09

7 Present(e,<5x107)

9 N 1 " 1 .
10 0 0.2 0.4 t

FiG. 6. Temporal global error &, by various methods.



510 NOBUMASA TAKEMITSU

1 — 1 1 \l
0 2 4 6 x
SN\ SMAC
-2} / Present ;5
(E7<5x10°7)

Exact 7SR y-w
/ N
Presen_tz N

-4 (ep<107)

FiG. 7a. Pressure distributions by various methods along center line (r=(.5).

r‘f*.'- Present
- (E0<5x107)

MAC

FiG. 7b. Temporal pressure gradient at x = 3 on center line by various methads.
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TABLE 1

Comparison of the Number of Iterations by Various Methods

Criterion of Number of CPU time (approx.)
Methods convergence iterations (sec)
W-w £,<20x10 * 232 4
MAC £, <20x10 * 6678 34
SMAC £,<20x 107 5869 26
Present ip<1.0x10-2 314 5
ep<50x10 ? 506 6

shows temporal pressure gradients at x = 3 on center line by various methods. Only
in the present method, with &, <Sx 10 3, and in the y¥-w method is the pressure
gradient calculated accurately even for small time values. The SMAC method shows
severc oscillation, and the MAC method is inaccurate (sce also Fig. 7a).

Table I shows number of iterations and CPU times by various methods. The
solution by the y—w method is very fast and is accurate. The number of itcrations
required for convergence by the present method is about 1.5 times that by the - ©
method, and about 1/20 times smaller compared with the MAC and the SMAC
methods. Moreover, the solutions by the present method are accurate.

B. Steady Flow

As a simple example which has a corner in fluid, a steady flow past a backward-
facing step is studied (see Fig. 8).

In steady flow problems, the Navier-Stokes equations are written in the form

cu®  Cur % 1,
= — Vi, (24a)
éx  Cy ¢x Re
cut v’ ¢ 1,
caﬂ+£f—= —:—p-'r——V‘v, {24b)
cx  cy ¢y Re

D=2y Z oy, (24c)

éx Oy

"
|

1‘4! > 7 LLLLILLLILLLLLL..

e 0N
04! . Recirculating Region l—_:"
0 2 /772/77/ /77/7'&” x

F1G. 8. Backward-facing step flow.
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and
uw Otw 1
cuw 00 _ 1 g2, 25:
@x+ éy Re @ (252)
w= -V, u=0oy/dy, v= —8y/cx. (25b, ¢)

Since the iterative solution of vorticity often diverges at higher Reynolds num-
bers, methods to stabilize the calculation of vorticity should be used. In the present
calculation, the author’s method [11] is modified so that the vorticity obtained
from Eq. (25) is the same as that obtained from Eqs. (24). This method has second-
order accuracy in the whole flow field and avoids iteration divergence. Similar
stabilized finite difference equations, which are different from second-order
upstream difference equations (see, for examples, Ref. [12]), have been previousty
published [13-15]. In this problem we use the finite difference equations

EA SR VR AL
Re\I2 T2 ) TH\R TS ) e

2 2 s N
_ _—<u,~+ l‘,’2.j_ui- 11'2'/’+ u['j+ 120i - 1/2,/+17 ui,j l/Zbi— l,”l/‘) +‘u <l+l> u
[y
S

h s i
_Pij i .)_1+E{P(ui—'1,j+uj— l,j)+?(UI,jil+ui_j_ ,)}, (26a)
uk D =ul) + RF (u¥, — uff)), (26b)

2 1+1>+ LV,
Re\R2 T2 THE\RTS) (Y

. 2 32
_ _<ui+ L -12Vic 2, Wi j— 1205 l/'2,j+ Vijv12 Vi 12 tu 1+1 .
h s h o s)

Pij— Pij- 1 1 1
-l p 2 1+k—e{}7(51+1./+01- I,j)+?(vl.j+l+vi‘j—l) : (26¢)
valr 1= l’,(,l}) +RF (v}, — o)), (26d)
\ (k+1)
Ui = Uiy Uijy— U
DE.",-*”=< SR — ’> : (26¢)

where p, a relation factor, stabilizes the iterative process, and RF, and RF, are
relaxation factors for v and v, respectively (present method).
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In the Y- method, Eq. (25) is discretized as

200 1\ pl
Re\R2 7 52) T2\R "5 pO

o My 2@y T Uy -1/2wi—l,j+ui 241 @ige = Ui 1, 1 Wiy g
2h 2s )
ufl 1 1 (1 1
'2" E+E C"i.i"*"ﬁ 'Ei(wi-b 1,,’+wi—1,;)+5—2((«’)1_j+|+(Ui.j 1) (27a)
(k1) = (y(k) ¥ _ oplkn
ol "=+ RF (0*,; W), (27b)

where RF, is a relaxation factor for w.

The case of Re = 50 is studied and mesh sizes 4 and s are chosen as £#=s5=0.1. As
is shown in Fig. 8, the length of the channel is taken as 6, and the height as 1.4, and
the backward-facing step is located at x =2 and its height Sh is 0.4, and L, denotes
the length of recirculating region.

Initial values are set equal to those from steady Poiseuille flow,

u= —6y7+ 62y, +1) y—6y,(y, + 1), v=0, {28a)
Y= =27 +3(2p + 1)y = 6pi(yy +1) y+ ¥i(2y, +3), (28b)
w=12y —6(2y, + 1), (28c)

where y, =0.4. Pressure equals zero in the whole flow ficld. Boundary conditions
are imposed at the upstrcam end in the same form as Eqgs. (28a), (28b), (28¢c):

Upj = Uy (j=2) or U j o= —ui‘i(_/'z.IC—»Z),
v=0, (28d)
y=0 or yY=I (28e)

on the wall.
In the present method, ¢ is calculated by the equations

(/R + 1/s*) ¢F=(brsr it b 1 )R+ iy 1is™ - DY, (29a)

(l/hz'*”z/lsz) ;'.‘j=¢i+l‘j/h2+(¢i,j—l +¢r,j- 1),",52‘“D5‘k,)s {29b)

instead of Eq. (19b) at the corner C, since ¢ is a multi-valued function (see Fig. 9).
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|
o
vs0 ¥
Wwall T
BlBCA™
BA“ifd
. Wall
Bi{B|B
R

FiG. 9. Corner cell. B=Boudary cell, C = corner cell, open box = fluid cell.

Two calculation procedures follow:

(i) ¥ o method

l//(k)

(9(k) w(k Ry
k=k+1
vl p(k+1)
y&) w(k+ 1)
= Eq.(16d) | Egs. (24a), (24b)

(k)

P Egs. (16¢), (27b)

(1) Present method

(k)

v
k=k+1
v(k-il) o D(k-+—l) . ¢(k+2) o v(k 1y _ p(k-f-l)
pto Egs. (26b), Eq. (26e) Eq. (19¢) Eq. (19d) Egs. (24a),
(26d) (24.b)

The relaxation factors RF,, RF,, RF,, RF,, and yu are all taken to be 1.

Table II shows the comparison of number of iterations and errors ¢, (f=
¥, w,u,v), ¢n (Eq. (22)), and &y, which is defined by

ep = |left-hand side of Eqs. (24a), (24b)
—right-hand side of Eqs. (24a), (24b){ ,.x»

or

= |left-hand side of Eq. (25a)
—right-hand side of Eq. (25a) ,.x-
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a
LLL LLLLLLLLLL. /JZLZLLLZLL};‘A

R e —_— —_ —_ — b

R I —e — —

77 TSI T T

F1G. 10a. Velocity vectors obtained by the present method III. Unit velocity vector = —.

The Y—w method is the fastest one to obtain a solution in steady flow. But the time-
marching method by the y—w method (calculated by Eqgs. (16a), (16¢) and 4=
1/100) needs more time to obtain a converged solution, because ¢, is larger by one
order compared with the ¥—w method (see also Fig. 11). Too many iterations are
needed to obtain convergence in the present method I, where ¢=0 in each
iteration; but the iteration process is the most stable. If we put ¢=0 when ¢% >
e~V (present method II), the iteration process is less stable but ep, is smaller by
one order compared with the present method I with almost the same iteration num-
ber. If we put ¢ =0 when &) >&i~" and &{ >¢{~ " (present method III), the
number of iterations is almost the same as that by the y-w method, and the
solution obtained is accurate if the iteration process remains stable.

Velocity vectors and stream functions obtained by the present method III are
shown in Figs. 10a and b, respectively.

Figure 11 shows vorticity distributions on the wall by various methods. Solution
by the time-marching method has not yet converged in steady state because the
absolute values of the vorticity on the wall at the downstream end are not nearly
equal. Solution by the present methed III is very close to the one by the y—w
method.

From the table and figures, it is considered that the present method is accurate
and needs less time to obtain solution for steady flow, too.

$=1 b
0.95
0.8
- — 08
g
0.2
IQ\}) 0.05
=3 -

-0.04 ¥=0

FiG. 10b. Streamless obtained by the present method III.
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F1G. 11. Vorticity distributions on the wall obtained by various methods. 1 =y @, 2 = - {time-
marching method), 3 = present method I11.

CONCLUSIONS

A new method, in which an idea that the Navicr- Stokes equations have an
invariant implicitly in each iteration at any time step or at any iteration is applied,
is presented. Using this method, some numerical experiments were performed. As a
result of this study, we conclude:

(1) Navier-Stokes equations with an invariant implicitly in each iteration
produce cfficient and accurate numerical solutions.

(2) The proposed method is also applicable to steady flow and three-dimen-
sional flow problems.

The method proposed here has also been extended to the Crank-Nicolson
method, a non-iterative implicit method, and a two-step method [16].
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